32 research outputs found

    Studies and experimental activities to qualify the behaviour of RF power circuits for negative Ion sources of neutral beam injectors for ITER and fusion experiments

    Get PDF
    The International Thermonuclear Experimental reactor (ITER), the world’s largest experimental facility in the realm of nuclear fusion for energy production, requires two Neutral Beam Injectors (NBI) rated for the total power of 33 MW for plasma heating and current drive. The ITER NBI includes an ion source which can produce 40 A of D¯ ions beams for 3600 s, accelerated at the energy of 1 MeV. The requirements for the ITER NBI are quite demanding and have never been achieved before all together in a single device. This specifically called for a development of the ITER Neutral Beam Test Facility (NBTF) called PRIMA (Padova Research on ITER Megavolt Accelerator) to carry out an international R&D program for the achievement of the ITER NBI requirements and the optimization of the operation in advance of the future use in ITER. The facility will host two experiments, SPIDER (Source for the Production of Ions of Deuterium Extracted from RF plasma), the full-size prototype of ITER RF ion source, and MITICA (Megavolt ITER Injector and Concept Advancement), the full-scale prototype of the ITER heating NBI. The NBTF in Padova, Italy, is ready, MITICA is currently under construction and SPIDER has been in operation since beginning of June 2018. The NBI ion source was initially based on filament type arc source, while for ITER the inductively coupled (IC) radio frequency (RF) ion source have been finally chosen in 2007. This is because RF sources present several advantages with respect to arc solutions; they have fewer parts and require less maintenance. In these ion sources, radio frequency plasma is generated at the frequency of 1 MHz and is characterized by high RF power density and low operational pressure (around 0.3 Pa). In the last decades, IC ion sources have been developed, studied and experimented at the Max-Planck-Institut für Plasmaphysik (IPP) in Garching, Germany. The most recent one is ELISE (Extraction from a Large Ion Source Experiment), which is able to operate with both Hydrogen and Deuterium gas species and has half the size of ITER NBI source. Other accompanying activities have been recently launched at Consorzio RFX, Padova, Italy within the ITER NBI work program; one of them is a relatively small ion source called NIO1 (Negative Ion Optimization 1) working at 2 MHz, developed in order to gain experience on ion source operation and to study specific physics and engineering topics on a more flexible and accessible device than the SPIDER and MITICA. In addition, a small experimental test facility called HVRFTF (High Voltage Radio Frequency Test Facility) based on a high voltage resonance circuit that feeds a couple of electrodes in vacuum has been started at Consorzio RFX in 2014 to address and study the voltage holding capability of the RF components in the ion source at 1 MHz. The research endeavor during the three years of my PhD was carried out in the frame of the RF R&D task of the NBTF work-program at Consorzio RFX and during the mobility periods at the IPP. I have had the opportunity to work on two main lines: the first was dedicated towards the study of the RF power transfer efficiency of IC RF ion sources and the development of suitable models that will permit to explore possible improvements (in the future). In fact, the higher the efficiency, the lower can be the feeding power to the ion source and this may lead to a lower requirement both for cooling and for electrical insulation of the RF circuit components installed on the source. I have studied and analyzed several plasma heating mechanisms (like ohmic and stochastic heating in particular) and I have developed an electrical model which is responsible for describing the power transfer to the plasma. The first approach was based on a transformer model, and then a multi current filament model has been developed. This model is capable to account for the currents in the passive metallic structure within the driver region of the ion source and with this; it is able to overcome the main limitation of the transformer model. Furthermore, I have integrated all the models to develop a novel methodology to evaluate the efficiency of the RF power transfer to the hydrogen plasma in a cylindrical source. Then, I have implemented the methodology in a MATLAB® code and applied it to the driver of ELISE and NIO1 ion sources showing the results in terms of plasma equivalent resistance and power transfer efficiency obtained as a function of applied frequency and plasma parameters (electron density and gas pressure). The second part of my work was directed towards the design, construction and set-up of the HVRFTF. I gave an important contribution in terms of the electrical characterization of the RF resonance circuit components (mainly the two solenoid coupled inductor), thermal analysis of the electrodes placed inside the vacuum vessel, analyses and design of an efficient shielding from the electro-magnetic radiations foreseen during the operation of the test facility. All this contributed towards the success in the set-up of the test facility which is now in operation. The thesis is structured as follows: Chapter 1 and 2 are introductory chapters on the present energy scenario in the world, the role of the thermo-nuclear fusion and the main fusion experimental device called ITER. The requirement of additional heating systems in ITER along with the description of Neutral beam injection (NBI) system and relevant ion sources (SPIDER, ELISE and NIO1) are presented in these chapters. Then, the thesis is divided into two main parts: Part 1 – From Chapter 3 to Chapter 6 - describes my work on the power transfer efficiency to the plasma of the inductively coupled radio frequency ion sources. Part 2 – From Chapter 7 to chapter 10 - summarizes first the aim of the HVRFTF then reports my contribution to its design and set-up. Lastly, the overall conclusion highlighting the most significant results obtained from the research described in both the parts of the thesis is discussed and a further possible research activity is highlighted for the future work. Throughout the journey of the PhD, I have had the opportunity to grow and acquire different research competences ranging from conceptual studies, modeling activities, practice on several numerical codes and also experimental work, in an international context

    Studies and experimental activities to qualify the behaviour of RF power circuits for Negative Ion Sources of Neutral Beam Injectors for ITER and fusion experiments

    Get PDF
    The International Thermonuclear Experimental reactor (ITER), the world’s largest experimental facility in the realm of nuclear fusion for energy production, requires two Neutral Beam Injectors (NBI) rated for the total power of 33 MW for plasma heating and current drive. The ITER NBI includes an ion source which can produce 40 A of D¯ ions beams for 3600 s, accelerated at the energy of 1 MeV. The requirements for the ITER NBI are quite demanding and have never been achieved before all together in a single device. This specifically called for a development of the ITER Neutral Beam Test Facility (NBTF) called PRIMA (Padova Research on ITER Megavolt Accelerator) to carry out an international R&D program for the achievement of the ITER NBI requirements and the optimization of the operation in advance of the future use in ITER. The facility will host two experiments, SPIDER (Source for the Production of Ions of Deuterium Extracted from RF plasma), the full-size prototype of ITER RF ion source, and MITICA (Megavolt ITER Injector and Concept Advancement), the full-scale prototype of the ITER heating NBI. The NBTF in Padova, Italy, is ready, MITICA is currently under construction and SPIDER has been in operation since beginning of June 2018. The NBI ion source was initially based on filament type arc source, while for ITER the inductively coupled (IC) radio frequency (RF) ion source have been finally chosen in 2007. This is because RF sources present several advantages with respect to arc solutions; they have fewer parts and require less maintenance. In these ion sources, radio frequency plasma is generated at the frequency of 1 MHz and is characterized by high RF power density and low operational pressure (around 0.3 Pa). In the last decades, IC ion sources have been developed, studied and experimented at the Max-Planck-Institut für Plasmaphysik (IPP) in Garching, Germany. The most recent one is ELISE (Extraction from a Large Ion Source Experiment), which is able to operate with both Hydrogen and Deuterium gas species and has half the size of ITER NBI source. Other accompanying activities have been recently launched at Consorzio RFX, Padova, Italy within the ITER NBI work program; one of them is a relatively small ion source called NIO1 (Negative Ion Optimization 1) working at 2 MHz, developed in order to gain experience on ion source operation and to study specific physics and engineering topics on a more flexible and accessible device than the SPIDER and MITICA. In addition, a small experimental test facility called HVRFTF (High Voltage Radio Frequency Test Facility) based on a high voltage resonance circuit that feeds a couple of electrodes in vacuum has been started at Consorzio RFX in 2014 to address and study the voltage holding capability of the RF components in the ion source at 1 MHz. The research endeavor during the three years of my PhD was carried out in the frame of the RF R&D task of the NBTF work-program at Consorzio RFX and during the mobility periods at the IPP. I have had the opportunity to work on two main lines: the first was dedicated towards the study of the RF power transfer efficiency of IC RF ion sources and the development of suitable models that will permit to explore possible improvements (in the future). In fact, the higher the efficiency, the lower can be the feeding power to the ion source and this may lead to a lower requirement both for cooling and for electrical insulation of the RF circuit components installed on the source. I have studied and analyzed several plasma heating mechanisms (like ohmic and stochastic heating in particular) and I have developed an electrical model which is responsible for describing the power transfer to the plasma. The first approach was based on a transformer model, and then a multi current filament model has been developed. This model is capable to account for the currents in the passive metallic structure within the driver region of the ion source and with this; it is able to overcome the main limitation of the transformer model. Furthermore, I have integrated all the models to develop a novel methodology to evaluate the efficiency of the RF power transfer to the hydrogen plasma in a cylindrical source. Then, I have implemented the methodology in a MATLAB® code and applied it to the driver of ELISE and NIO1 ion sources showing the results in terms of plasma equivalent resistance and power transfer efficiency obtained as a function of applied frequency and plasma parameters (electron density and gas pressure). The second part of my work was directed towards the design, construction and set-up of the HVRFTF. I gave an important contribution in terms of the electrical characterization of the RF resonance circuit components (mainly the two solenoid coupled inductor), thermal analysis of the electrodes placed inside the vacuum vessel, analyses and design of an efficient shielding from the electro-magnetic radiations foreseen during the operation of the test facility. All this contributed towards the success in the set-up of the test facility which is now in operation. The thesis is structured as follows: Chapter 1 and 2 are introductory chapters on the present energy scenario in the world, the role of the thermo-nuclear fusion and the main fusion experimental device called ITER. The requirement of additional heating systems in ITER along with the description of Neutral beam injection (NBI) system and relevant ion sources (SPIDER, ELISE and NIO1) are presented in these chapters. Then, the thesis is divided into two main parts: Part 1 – From Chapter 3 to Chapter 6 - describes my work on the power transfer efficiency to the plasma of the inductively coupled radio frequency ion sources. Part 2 – From Chapter 7 to chapter 10 - summarizes first the aim of the HVRFTF then reports my contribution to its design and set-up. Lastly, the overall conclusion highlighting the most significant results obtained from the research described in both the parts of the thesis is discussed and a further possible research activity is highlighted for the future work. Throughout the journey of the PhD, I have had the opportunity to grow and acquire different research competences ranging from conceptual studies, modeling activities, practice on several numerical codes and also experimental work, in an international context

    1-PAGER: One Pass Answer Generation and Evidence Retrieval

    Full text link
    We present 1-Pager the first system that answers a question and retrieves evidence using a single Transformer-based model and decoding process. 1-Pager incrementally partitions the retrieval corpus using constrained decoding to select a document and answer string, and we show that this is competitive with comparable retrieve-and-read alternatives according to both retrieval and answer accuracy metrics. 1-Pager also outperforms the equivalent closed-book question answering model, by grounding predictions in an evidence corpus. While 1-Pager is not yet on-par with more expensive systems that read many more documents before generating an answer, we argue that it provides an important step toward attributed generation by folding retrieval into the sequence-to-sequence paradigm that is currently dominant in NLP. We also show that the search paths used to partition the corpus are easy to read and understand, paving a way forward for interpretable neural retrieval.Comment: Accepted at EMNLP 2023 (Findings

    Universally composable end-to-end secure messaging

    Full text link
    CNS-1718135 - National Science Foundation; CNS-1801564 - National Science Foundation; CNS-1931714 - National Science Foundation; CNS-1915763 - National Science Foundation; HR00112020021 - Department of Defense/DARPA; 000000000000000000000000000000000000000000000000000000037211 - SRI Internationalhttps://eprint.iacr.org/2022/376.pdfAccepted manuscrip

    Counting Distinct Elements in the Turnstile Model with Differential Privacy under Continual Observation

    Full text link
    Privacy is a central challenge for systems that learn from sensitive data sets, especially when a system's outputs must be continuously updated to reflect changing data. We consider the achievable error for differentially private continual release of a basic statistic -- the number of distinct items -- in a stream where items may be both inserted and deleted (the turnstile model). With only insertions, existing algorithms have additive error just polylogarithmic in the length of the stream TT. We uncover a much richer landscape in the turnstile model, even without considering memory restrictions. We show that every differentially private mechanism that handles insertions and deletions has worst-case additive error at least T1/4T^{1/4} even under a relatively weak, event-level privacy definition. Then, we identify a parameter of the input stream, its maximum flippancy, that is low for natural data streams and for which we give tight parameterized error guarantees. Specifically, the maximum flippancy is the largest number of times that the contribution of a single item to the distinct elements count changes over the course of the stream. We present an item-level differentially private mechanism that, for all turnstile streams with maximum flippancy ww, continually outputs the number of distinct elements with an O(wpolylogT)O(\sqrt{w} \cdot poly\log T) additive error, without requiring prior knowledge of ww. We prove that this is the best achievable error bound that depends only on ww, for a large range of values of ww. When ww is small, the error of our mechanism is similar to the polylogarithmic in TT error in the insertion-only setting, bypassing the hardness in the turnstile model

    Potencial mimético da insulina de Hylocereus undatus extraída de mio-inositol e de proteínas

    Get PDF
    Diseases are spreading like a trend and victimising every other individual globally. Here, we are referring to one such most common disease that has not even spared young lives i.e., diabetes. Annually, several people lose their lives and loved ones because of this dangerous disease. This has compelled the researchers to think and work on some life saving treatment. People suffering from hyperglycaemic conditions have insulin resistance which can be improved by intake of myo-inositol. Myo-inositol has potential to regulate this insulin hormone which can prevent and control diabetes mellitus. In this research, we have used a natural source (fruit) Hylocereus undatus; it has proved to be a good source of myo-inositol and some proteins that help in insulin regulation naturally. Several techniques and tests were performed such as extraction, purification, crystallisation, proteolytic activity assay, protein estimation, etc. Positive results of myo-inositol were observed through crystallisation together with decent amount of protein concentrations by Folin Lowry test and SDS-PAGE analysis.Las enfermedades se están extendiendo como una tendencia y victimizando a todos los demás individuos a nivel mundial. Aquí, nos referimos a una de esas enfermedades más comunes que ni siquiera perdonó vidas jóvenes, a saber, la diabetes. Cada año, varias personas pierden la vida y sus seres queridos a causa de esta peligrosa enfermedad. Esto obligó a los investigadores a pensar y trabajar en algún tratamiento que salve vidas. Las personas que sufren de hiperglucemia tienen resistencia a la insulina, que puede mejorar tomando myo-inositol. El mioinositol tiene el potencial de regular esta hormona insulina que puede prevenir y controlar la diabetes mellitus. En esta investigación, utilizamos una fuente natural (fruta) de Hylocereus undatus, que demostró ser una buena fuente de mioinositol y algunas proteínas, que ayudan a regular la insulina de forma natural. Se realizaron varias técnicas y pruebas, como extracción, purificación, cristalización, ensayo de actividad proteolítica, estimación de proteínas, etc. Se observaron resultados positivos de mioinositol a lo largo de la cristalización junto con cantidades decentes de concentraciones de proteína mediante la prueba de Folin Lowry y el análisis SDS-PAGE.As doenças estão se espalhando como uma tendência e vitimando todos os outros indivíduos globalmente. Aqui, estamos nos referindo a uma dessas doenças mais comuns que nem mesmo poupou vidas jovens, ou seja, diabetes. Anualmente, várias pessoas perdem suas vidas e entes queridos por causa dessa doença perigosa. Isso obrigou os pesquisadores a pensar e trabalhar em algum tratamento para salvar vidas. As pessoas que sofrem de condições hiperglicêmicas têm resistência à insulina, que pode ser melhorada pela ingestão de mio-inositol. O mio-inositol tem potencial para regular esse hormônio insulina que pode prevenir e controlar o diabetes mellitus. Nesta pesquisa, usamos uma fonte natural (fruto) de Hylocereus undatus, que provou ser uma boa fonte de mio-inositol e algumas proteínas, que ajudam na regulação da insulina naturalmente. Várias técnicas e testes foram realizados, como extração, purificação, cristalização, ensaio de atividade proteolítica, estimativa de proteína etc. Resultados positivos de mio-inositol foram observados através da cristalização juntamente com quantidades decentes de concentrações de proteína pelo teste Folin Lowry e análise SDS-PAGE

    Universally Composable End-to-End Secure Messaging

    Get PDF
    We model and analyze the Signal end-to-end secure messaging protocol within the Universal Composability (UC) framework. Specifically: (1) We formulate an ideal functionality that captures end-to-end secure messaging in a setting with Public Key Infrastructure (PKI) and an untrusted server, against an adversary that has full control over the network and can adaptively and momentarily compromise parties at any time, obtaining their entire internal states. Our analysis captures the forward secrecy and recovery-of-security properties of Signal and the conditions under which they break. (2) We model the main components of the Signal architecture (PKI and long-term keys, the backbone continuous-key-exchange or asymmetric ratchet , epoch-level symmetric ratchets, authenticated encryption) as individual ideal functionalities. These components are realized and analyzed separately, and then composed using the UC and Global-State UC theorems. (3) We show how the ideal functionalities representing these components can be realized using standard cryptographic primitives with minimal hardness assumptions. Our modeling introduces additional innovations that enable arguing about the security of Signal, irrespective of the underlying communication medium, and facilitate the secure composition of dynamically generated modules that share state. These features, in conjunction with the basic modularity of the UC framework, will hopefully facilitate the use of both Signal-as-a-whole and its individual components within cryptographic applications

    The price of differential privacy under continual observation

    Get PDF
    We study the accuracy of differentially private mechanisms in the continual release model. A continual release mechanism receives a sensitive dataset as a stream of T inputs and produces, after receiving each input, an accurate output on the obtained inputs. In contrast, a batch algorithm receives the data as one batch and produces a single output. We provide the first strong lower bounds on the error of continual release mechanisms. In particular, for two fundamental problems that are widely studied and used in the batch model, we show that the worst case error of every continual release algorithm is ~Ω (T^1/3) times larger than that of the best batch algorithm. Previous work shows only a polylogarithimic (in T) gap between the worst case error achievable in these two models; further, for many problems, including the summation of binary attributes, the polylogarithmic gap is tight (Dwork et al., 2010; Chan et al., 2010). Our results show that problems closely related to summation-specifically, those that require selecting the largest of a set of sums|are fundamentally harder in the continual release model than in the batch model. Our lower bounds assume only that privacy holds for streams fixed in advance (the "nonadaptive" setting). However, we provide matching upper bounds that hold in a model where privacy is required even for adaptively selected streams. This model may be of independent interest.https://arxiv.org/abs/2112.0082
    corecore